Add like
Add dislike
Add to saved papers

Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM 2.5 using simulated lung fluid.

In this study, methodological factors influencing the dissolution of metal(loid)s in simulated lung fluid (SLF) was assessed in order to develop a standardised method for the assessment of inhalation bioaccessibility in PM2.5 . To achieve this aim, the effects of solid to liquid (S/L) ratio (1:100 to 1:5000), agitation (magnetic agitation, occasional shaking, orbital and end-over-end rotation), composition of SLF (artificial lysosomal fluid: ALF; phagolysosomal simulant fluid: PSF) and extraction time (1-120 h) on metal(loid) bioaccessibility were investigated using PM2.5 from three Australian mining/smelting impacted soils and a certified reference material. The results highlighted that SLF composition significantly (p < 0.001) influenced metal(loid) bioaccessibility and that when a S/L ratio of 1:5000 and end-over-end rotation was used, metal(loid) solubility plateaued after approximately 24 h. Additionally, in order to assess the exposure of metal(loid)s via incidental ingestion of surface dust, PM2.5 was subjected to simulated gastro-intestinal tract (GIT) solutions and the results were compared to extraction using SLF. Although As bioaccessibility in SLF (24 h) was significantly lower than in simulated GIT solutions (p < 0.05), Pb bioaccessibility was equal to or significantly higher than that extracted using simulated GIT solutions (p < 0.05).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app