Add like
Add dislike
Add to saved papers

Attentional bias modification alters intrinsic functional network of attentional control: A randomized controlled trial.

INTRODUCTION: Attentional bias modification (ABM) alleviates anxiety by moderating biased attentional processing toward threat; however, its neural mechanisms remain unclear. We examined how ABM changes functional connectivity (FC) and functional network measures, leading to anxiety reduction.

METHODS: Fifty-four healthy anxious individuals received either ABM or sham training for 1 month in a double-blind randomized controlled trial. Anxious traits, attentional control, and attentional bias were assessed. Thirty-five participants completed resting-state functional magnetic resonance imaging (MRI) scans before and after training.

RESULTS: ABM significantly mitigated an anxious traits regarding physical stress vulnerability (η2  = 0.12, p = 0.009). As compared to sham training, ABM significantly strengthened FC between the pulvinar and transverse temporal gyrus along the temporoparietal junction (T = 3.90, FDR-corrected p = 0.010), whereas it decreased FC between the postCG and ventral fronto-parietal network (vFPN) regions such as the anterior insula and ventrolateral prefrontal cortex (all T ≤ - 3.19, FDR-corrected p ≤ 0.034). Although ABM diminished network measures of the postcentral gyrus (postCG) (all T ≤ - 4.30, FDR-corrected p ≤ 0.006), only the pulvinar-related FC increase was specifically correlated with anxiety reduction (r = - 0.46, p = 0.007).

LIMITATIONS: Per-protocol analysis and reduced sample size in MRI analysis.

CONCLUSIONS: ABM might augment the pulvinar's control over vFPN to maintain endogenous attention to a behavioral goal, while diminishing the information exchanges of the postCG with vFPN to inhibit the capture of exogenous attention by potential threats. The pulvinar might play a critical role in ABM anxiolytic efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app