Add like
Add dislike
Add to saved papers

d-Cycloserine facilitates fear extinction in adolescent rats and differentially affects medial and lateral prefrontal cortex activation.

Adolescent humans and rodents are impaired in extinguishing learned fear relative to younger and older groups. This impairment could be due to differences in recruitment of medial prefrontal cortex (PFC), orbitofrontal cortex (OFC), or amygdala during extinction. For example, unlike juveniles and adults, adolescent rats do not express extinction-induced increases in phosphorylated mitogen activated protein kinase (pMAPK), a marker of synaptic plasticity, in the medial PFC. The NMDA receptor partial agonist d-cycloserine (DCS) improves extinction retention in adolescent rats. We investigated whether DCS affected recruitment of the PFC and amygdala during extinction by measuring pMAPK-immunoreactive (IR) neurons. Adolescent rats were trained to fear a conditioned stimulus in one context followed by extinction in a second context or equivalent context exposure only (i.e., no extinction). DCS (15 mg/kg, s.c.) or saline was administered systemically immediately after extinction training or context exposure. DCS enhanced extinction learning and this was associated with increased activation of the MAPK signaling pathway in the OFC after extinction training and increased activation in the medial PFC and amygdala at extinction retention. These findings suggest that DCS improves extinction learning in adolescents because it augments OFC contributions to extinction learning, enabling better medial prefrontal contributions to extinction retention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app