Journal Article
Review
Add like
Add dislike
Add to saved papers

Integration of Sensors in Gastrointestinal Organoid Culture for Biological Analysis.

The gastrointestinal (GI) tract regulates physiologic responses in complex ways beyond facilitating nutrient entry into the circulatory system. Because of the anatomic location of the GI tract, studying in vivo physiology of the human gut, including host cell interaction with the microbiota, is limited. GI organoids derived from human stem cells are gaining interest as they recapitulate in vivo cellular phenotypes and functions. An underdeveloped capability that would further enhance the utility of these miniature models of the GI tract is to use sensors to quantitatively characterize the organoid systems with high spatiotemporal resolution. In this review, we first discuss tools to capture changes in the fluid milieu of organoid cultures both in the organoid exterior as well as the luminal side of the organoids. The subsequent section describes approaches to characterize barrier functions across the epithelial layer of the GI organoids directly or after transferring the epithelial cells to a 2-dimensional culture format in Transwells or compartmentalized microchannel devices. The final section introduces recently developed bioengineered bacterial sensors that sense intestinal inflammation-related small molecules in the lumen using lambda cI/Cro genetic elements or fluorescence as readouts. Considering the small size and cystic shape of GI organoids, sensors used in conventional macroscopic intestinal models are often not suitable, particularly for time-lapse monitoring. Unmet needs for GI organoid analysis provides many opportunities for the development of noninvasive and miniaturized biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app