Add like
Add dislike
Add to saved papers

Rho-kinase inhibitors do not expand hematoma volume in acute experimental intracerebral hemorrhage.

Rho-associated kinase (ROCK) is an emerging target in acute ischemic stroke. Early pre-hospital treatment with ROCK inhibitors may improve their efficacy, but their antithrombotic effects raise safety concerns in hemorrhagic stroke, precluding use prior to neuroimaging. Therefore, we tested whether ROCK inhibition affects the bleeding times, and worsens hematoma volume in a model of intracerebral hemorrhage (ICH) induced by intrastriatal collagenase injection in mice. Tail bleeding time was measured 1 h after treatment with isoform-nonselective inhibitor fasudil, or ROCK2-selective inhibitor KD025, or their vehicles. In the ICH model, treatments were administered 1 h after collagenase injection. Although KD025 but not fasudil prolonged the tail bleeding times, neither drug expanded the volume of ICH or worsened neurological deficits at 48 h compared with vehicle. Although more testing is needed in aged animals and comorbid models such as diabetes, these results suggest ROCK inhibitors may be safe for pre-hospital administration in acute stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app