Add like
Add dislike
Add to saved papers

Hemodynamic analysis of carotid artery after endarterectomy: a preliminary and quantitative imaging study based on computational fluid dynamics and magnetic resonance angiography.

Background: The carotid blood flow following carotid endarterectomy (CEA) is not fully understood. Computational fluid dynamics (CFD) is a promising method to study blood flow. This study is to investigate local hemodynamic characteristics after CEA via the use of unenhanced magnetic resonance angiography (MRA) and CFD.

Methods: Eight carotid arteries with atherosclerosis and sixteen normal carotid arteries were included in this study. Time-of-flight (TOF) and phase contrast (PC) MRA were applied for the measurement of three-dimensional artery geometries and velocity profile under CFD simulation. The hemodynamic parameters of the proximal internal carotid artery (ICA) including velocity, ICA/common carotid artery (CCA) velocity ratio, mean, maximum, minimum and gradient of wall shear stress (WSSmean , WSSmax , WSSmin and WSSG) were calculated before and after CEA. Morphologic characteristics of the carotid including bifurcation angle, tortuosity and planarity were also analyzed.

Results: Compared with pre-CEA, there was a significant reduction in post-CEA velocity, WSSmax , WSSmean , and WSSG, by 87.24%±13.38%, 86.86%±14.97%, 57.32%±56.71% and 69.74%±37.03% respectively, whereas WSSmin was almost unchanged. ICA/ CCA velocity ratios increased significantly after CEA. We also found that the post-CEA flow conditions were positively remodelled to approximate the conditions in normal arteries. The correlation between PC-MRA and CFD was excellent for the measurement of maximum velocity at the external carotid artery (r=0.846).

Conclusions: Our preliminary results indicated that major flow dynamics were restored shortly following CEA, and CFD based on MRA measurements could be useful for quantitative evaluation of hemodynamic outcomes after CEA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app