Add like
Add dislike
Add to saved papers

Sulfonated Compounds Bind with Prostatic Acid Phosphatase (PAP 248-286 ) to Inhibit the Formation of Amyloid Fibrils.

ChemistryOpen 2018 June
The peptide segment of prostatic acid phosphatase (PAP248-286 ) aggregates to form SEVI (semen-derived enhancer of virus infection) amyloid fibrils. These are characteristic seminal amyloids that have the ability to promote the effect of HIV infection. In this paper, we explore the binding of sulfonated compounds with PAP248-286 through an in silico study. Three derivatives of suramin, NF110, NF279, and NF340, are selected. All of these sulfonated molecules bind to PAP248-286 and alter the conformation of the peptide, even though they have various structures, sizes, and configurations. The compounds bind with PAP248-286 through multiple interactions, such as hydrogen-bonding interactions, hydrophobic interactions, π-π stacking interactions, and electrostatic interactions. However, NF110, which has an X-shaped configuration, has the highest binding affinity of the three derivatives investigated. We also perform surface plasmon resonance and a Congo red assay to validate the results. The interactions between PAP248-286 and the sulfonated compounds are proposed to depend on the orientations of the sulfonate groups and the specific configurations of the compounds instead of the number of sulfonate groups. NF110 molecules occupy the exposed binding sites of PAP248-286 , blocking interactions between the peptides. Therefore, these compounds are important in inhibiting the aggregation of PAP248-286 . Herein, we provide useful information to develop new efficient microbicides to antagonize seminal amyloid fibrils and to block HIV transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app