Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Control of neurite growth and guidance by an inhibitory cell-body signal.

The development of a functional nervous system requires tight control of neurite growth and guidance by extracellular chemical cues. Neurite growth is astonishingly sensitive to shallow concentration gradients, but a widely observed feature of both growth and guidance regulation, with important consequences for development and regeneration, is that both are only elicited over the same relatively narrow range of concentrations. Here we show that all these phenomena can be explained within one theoretical framework. We first test long-standing explanations for the suppression of the trophic effects of nerve growth factor at high concentrations, and find they are contradicted by experiment. Instead we propose a new hypothesis involving inhibitory signalling among the cell bodies, and then extend this hypothesis to show how both growth and guidance can be understood in terms of a common underlying signalling mechanism. This new model for the first time unifies several key features of neurite growth regulation, quantitatively explains many aspects of experimental data, and makes new predictions about unknown details of developmental signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app