Add like
Add dislike
Add to saved papers

Reconstitution and Electrophysiological Characterization of Ion Channels in Lipid Bilayers.

Detergent-solubilized purified ion channels can be reconstituted into lipid bilayers for electrophysiological analysis. Traditionally, ion channels were inserted into vesicles and subsequently fused with planar "black lipid membranes" formed from lipids dissolved in a hydrophobic solvent such as decane. Provided in this article is a step-by-step guide to reconstitute purified ion channel proteins into giant unilamellar vesicles (GUVs). This procedure results in the formation of proteoliposomes that can be used for planar bilayer formation and electrophysiological characterization of single-channel currents. By using preformed GUVs it is possible to omit the membrane solvent. Compared to traditional preparations, the lipid bilayers formed from GUVs provide an environment that more closely resembles the native cell membrane. Also described is an alternate protocol that entails the production of planar lipid bilayers from GUVs onto which proteins in detergent are added. © 2018 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app