Add like
Add dislike
Add to saved papers

Predicting functional outcome of ischemic stroke patients in Romania based on plasma CRP, sTNFR-1, D-Dimers, NGAL and NSE measured using a biochip array.

In cerebral ischemia, evaluation of multiple biomarkers involved in various pathological pathways is a useful tool in assessing the outcome of the patients even from the early stages of the disease. In this study we investigated the utility of a panel of 5 peripheral biomarkers of inflammatory status, neuronal destruction and secondary fibrinolysis in the acute phase of ischemia, and evaluated the impact of these biomarkers on functional outcome after ischemic stroke. The 5 biomarkers (plasma CRP, D-Dimers, sTNFR-1, NGAL and NSE) were measured using a biochip array technology. Eighty nine patients in Romania were divided into 2 subgroups using the modified Rankin Scale evaluated at 3 months after ischemic stroke; the possible impact of analyzed biomarkers on unfavorable functional outcome was tested by binomial logistic regression. The subgroup with unfavorable outcome had higher concentrations of CRP, NGAL, sTNFR-1 and D-dimers, but CRP and NGAL values were not statistically different between the two subgroups. The univariate logistic regression analysis of plasma biomarkers revealed that CRP, D-Dimers, NGAL, sTNFR-1 were significant predictors of unfavorable clinical outcome. In the case of D-Dimers and sTNFR-1 we noticed an increased discrimination ability (versus baseline clinical model) to classify poor functional outcome with a tendency toward statistical signification. During the acute phase of the ischemic stroke, plasma concentrations of CRP, D-Dimers and sTNFR-1 were elevated in unfavorable outcome patients. D-Dimers and sTNFR-1 were independent predictors of poor outcome at 3 months after ischemic stroke. The biochip array technology offers the possibility to simultaneously measure several parameters involved in multiple pathophysiological pathways, in a small sample volume.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app