Add like
Add dislike
Add to saved papers

Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells.

Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly(3-hexylthio-phene-2,5-diyl) and indene-C60 bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80-100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app