Add like
Add dislike
Add to saved papers

Role of autotaxin in cancer stem cells.

Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app