Add like
Add dislike
Add to saved papers

Attentional responses on an auditory oddball predict false memory susceptibility.

Attention and memory are highly integrated processes. Building on prior behavioral investigations, this study assesses the link between individual differences in low-level neural attentional responding and false memory susceptibility on the misinformation effect, a paradigm in which false event memories are induced via misleading post-event information. Twenty-four subjects completed the misinformation effect paradigm after which high-density (256-channel) EEG data was collected as they engaged in an auditory oddball task. Temporal-spatial decomposition was used to extract two attention-related components from the oddball data, the P3b and Classic Slow Wave. The P3b was utilized as an index of individual differences in salient target attentional responding while the slow wave was adopted as an index of variability in task-level sustained attention. Analyses of these components show a significant negative relationship between slow-wave responses to oddball non-targets and perceptual false memory endorsements, suggestive of a link between individual differences in levels of sustained attention and false memory susceptibility. These findings provide the first demonstrated link between individual differences in basic attentional responses and false memory. These results support prior behavioral work linking attention and false memory and highlight the integration between attentional processes and real-world episodic memory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app