Add like
Add dislike
Add to saved papers

MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1α and H1.2.

Oncogene 2018 June 21
Osteoclasts are multinuclear bone-resorbing cells that differentiate from hematopoietic precursor cells. Prostate cancer cells frequently spread to bone and secrete soluble signaling factors to accelerate osteoclast differentiation and bone resorption. However, processes and mechanisms that govern the expression of osteoclastogenic soluble factors secreted by prostate cancer cells are largely unknown. MacroH2A (mH2A) is a histone variant that replaces canonical H2A at designated genomic loci and establishes functionally distinct chromatin regions. Here, we report that mH2A1.2, one of the mH2A isoforms, attenuates prostate cancer-induced osteoclastogenesis by maintaining the inactive state of genes encoding soluble factors in prostate cancer cells. Our functional analyses of soluble factors identify lymphotoxin beta (LTβ) as a major stimulator of osteoclastogenesis and an essential mH2A1.2 target for its anti-osteoclastogenic activity. Mechanistically, mH2A1.2 directly interacts with HP1α and H1.2 and requires them to inactivate LTβ gene in prostate cancer cells. Consistently, HP1α and H1.2 have an intrinsic ability to inhibit osteoclast differentiation in a mH2A1.2-dependent manner. Together, our data uncover a new and specific role for mH2A1.2 in modulating osteoclastogenic potential of prostate cancer cells and demonstrate how this signaling pathway can be exploited to treat osteolytic bone metastases at the molecular level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app