Add like
Add dislike
Add to saved papers

Directional Sensitivity of a MEMS-Based Fiber-Optic Extrinsic Fabry⁻Perot Ultrasonic Sensor for Partial Discharge Detection.

Sensors 2018 June 21
Extrinsic Fabry⁻Perot (FP) interferometric sensors are being intensively applied for partial discharge (PD) detection and localization. Previous research work has mainly focused on novel structures and materials to improve the sensitivity and linear response of these sensors. However, the directional response behavior of an FP ultrasonic sensor is also of particular importance in localizing the PD source, which is rarely considered. Here, the directional sensitivity of a microelectromechanical system (MEMS)-based FP ultrasonic sensor with a 5-μm-thick micromechanical vibrating diaphragm is experimentally investigated. Ultrasonic signals from a discharge source with varying incident angles and linear distances are measured and analyzed. The results show that the sensor has a 5.90 dB amplitude fluctuation over a ±60° incident range and an exciting capability to detect weak PD signals from 3 m away due to its high signal⁻noise ratio. The findings are expected to optimize the configuration of a sensor array and accurately localize the PD source.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app