Add like
Add dislike
Add to saved papers

Hydrophobic Nanoprecipitates of β-Cyclodextrin/Avermectins Inclusion Compounds Reveal Insecticide Activity against Aedes aegypti Larvae and Low Toxicity against Fibroblasts.

In the present work, hydrophobic nanoprecipitates (HNPs) of inclusion complexes formed between β-cyclodextrin (βCD) and the avermectins (AVMs) named eprinomectin (EPRI) and ivermectin (IVER) were synthesized and characterized, and their larvicidal activity against Aedes aegypti and human safety against fibroblasts were evaluated. Initially, thermogravimetric analysis/differential thermal analysis data revealed that inclusion increased the thermal stability of AVMs in the presence of βCD. Nuclear magnetic resonance experiments and density functional theory calculations pointed out the inclusion of the benzofuran ring of the two AVMs in the βCD cavity. Isothermal titration calorimetry experiments allowed identification of different binding constants for EPRI/βCD ( Kb = 1060) and βCD/IVER ( Kb = 1700) systems, despite the structural similarity. Dynamic light scattering titrations of AVMs' dimethyl sulfoxide solution in βCD aqueous solution demonstrated that the formed HNPs have lower sizes in the presence of βCD. Finally, the inclusion of EPRI in βCD increased its larval toxicity and reduced its human cytotoxicity, while for IVER/βCD no beneficial effect was observed upon inclusion. These results were rationalized in terms of structural differences between the two molecules. Finally, the EPRI/βCD complex has great potential as an insecticide against A. aegypti larvae with high human safety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app