JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Two-Dimensional In-Sb Compound on Silicon as a Quantum Spin Hall Insulator.

Nano Letters 2018 July 12
Two-dimensional (2D) topological insulator is a promising quantum phase for achieving dissipationless transport due to the robustness of the gapless edge states resided in the insulating gap providing realization of the quantum spin Hall effect. Searching for two-dimensional realistic materials that are able to provide the quantum spin Hall effect and possessing the feasibility of their experimental preparation is a growing field. Here we report on the two-dimensional (In, Sb)2[Formula: see text]2[Formula: see text] compound synthesized on Si(111) substrate and its comprehensive experimental and theoretical investigations based on an atomic-scale characterization by using scanning tunneling microscopy and angle-resolved photoelectron spectroscopy as well as ab initio density functional theory calculations identifying the synthesized 2D compound as a suitable system for realization of the quantum spin Hall effect without additional functionalization like chemical adsorption, applying strain, or gating.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app