Add like
Add dislike
Add to saved papers

Behavioral and neurochemical responses derived from dopaminergic intrastriatal grafts in hemiparkinsonian rats engaged in a novel motor task.

BACKGROUND: Putative treatments derived from in vivo stem cell transplant-derived dopamine (DA) in hemiparkinsonian rats have been assessed via DA-agonist-induced rotations involving imbalanced intra-hemispheric striatal DA receptor stimulation. However, such tests obscure the natural responses of grafts to sensory stimuli, and drug-induced plasticity can modify the circuit being tested. Thus, we propose an alternative testing strategy using a novel water tank swimming apparatus.

NEW METHOD: Microdialysis was used to compare striatal DA levels when rats were: (1) in a rest-phase within a bowl-shaped apparatus, or (2) in an active forced-swim phase within a specially-equipped water tank. Resting-phase DA release levels were compared with active-phase levels obtained while rats were required to swim in the water-tank task. Behavioral variables such as asymmetric circling while swimming (rotations), front-limb strokes, and front-limb reaches were captured by a camera for analysis.

RESULTS AND COMPARISON WITH EXISTING METHODS: Transplanted cells had a very modest effect on percentage of contralateral front-limb strokes, but did not reduce lesion-induced rotational asymmetry in the swim task. Neither striatal DA levels, nor their breakdown products, were significantly different between transplanted and sham-transplanted groups. Our new behavioral test eliminates the need for pharmacological stimulation, enabling simultaneous assessment of DA released in resting and active phases to explore graft control.

CONCLUSIONS: Our new method allows for accurate assessments of stem cell therapy for PD as an alternative to "rotation" tests. Use of natural motivations to engage in sensory-driven motor tasks provides more accurate insights into ongoing graft-derived behavioral support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app