Add like
Add dislike
Add to saved papers

Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis.

ACS Nano 2018 July 25
The anodic oxygen evolution reaction (OER) is central to various energy conversion devices, but the investigation of the dynamic evolution of catalysts in different OER conditions remains quite limited, which is unfavorable for the understanding of the actual structure-activity relationship and catalyst optimization. Herein, we constructed monodispersed IrNi x nanoparticles (NPs) with distinct composition-segregated features and captured their structural evolution in various OER environments. We decoded the interesting self-reconstruction of IrNi x NPs during the OER, in which an Ir-skin framework is generated in an acidic electrolyte, while a Ni-rich surface layer is observed in an alkaline electrolyte owing to Ni migration. Benefiting from such self-reconstruction, considerable OER enhancements are achieved under both acidic and alkaline conditions. For comparison, IrNi x nanoframes with Ir skins prepared by chemical etching show a similar structural evolution result in the acidic electrolyte, but a total different phenomenon in the alkaline electrolyte. By tracking the structural evolution of IrNi x catalysts and correlating them with OER activity trajectories, the present work provides a significant understanding for designing efficient OER catalysts with controlled compositional distributions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app