Add like
Add dislike
Add to saved papers

Reconstitution of Mitotic Chromatids In Vitro.

The mitotic chromosome, which is composed of a pair of sister chromatids, is a large macromolecular assembly that ensures faithful transmission of genetic information into daughter cells. Despite its fundamental importance, how a nucleosome fiber is folded and assembled into a large-scale chromatid structure remains poorly understood. To address this question, we have established a biochemically tractable system in which mitotic chromatids can be reconstituted in vitro by mixing a simple substrate (sperm nucleus) and a limited number of purified factors. The minimum set of required factors includes core histones, three histone chaperones, topoisomerase II, and condensin I. In this article, we describe a set of protocols for the preparation of key reagents and the setup of reconstitution reactions. We believe that this classical approach of biochemical reconstitution will be of great help to dissect the mechanisms of action of individual factors during mitotic chromatid assembly and to assess the contribution of nucleosome dynamics to this process from a fresh angle. © 2018 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app