Add like
Add dislike
Add to saved papers

Hypertonic Sodium Chloride Preinjectate Increases In Vivo Radiofrequency Ablation Size: Histological and Magnetic Resonance Imaging Findings.

BACKGROUND AND OBJECTIVES: Emphasis has been placed on methods to enlarge monopolar radiofrequency (RF) lesion size for pain management. Ex vivo research has suggested that fluid modulation may be an effective method to enlarge lesion zone. To date, these findings have not been confirmed in vivo. The purpose of this study was to determine the effect of hypertonic saline on in vivo lesion size through both histological and magnetic resonance imaging (MRI) analysis. A secondary purpose was to validate in vivo characterization of RF lesions using contrast-enhanced MRI.

METHODS: Monopolar RF was performed in an in vivo porcine model in 3 groups: (1) without fluid preinjection, (2) with preinjection of 1% lidocaine, or (3) with preinjection of 1% lidocaine and 8% sodium chloride. Following lesioning, MRI processing with gadolinium-enhanced, T1-weighted imaging and histological analysis was performed.

RESULTS: The addition of 8% sodium chloride significantly increased the size of RF lesion in comparison to the addition of 1% lidocaine alone and to the absence of fluid injection, as assessed by histological and MRI analysis. Three distinct histological lesion zones were identified. In comparison to the no-fluid group, the addition of hypertonic saline significantly altered the shape and histological composition of the lesion. There was a significant correlation of lesion volume as assessed by MRI and by histology measurements. Peak power and total energy delivery also correlated with lesion size.

CONCLUSIONS: This study validates the ability of hypertonic saline to increase in vivo RF lesion size. With further refinement, MRI may be a viable method to assess RF lesion size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app