Add like
Add dislike
Add to saved papers

Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents.

In the current study, a series of new ligustrazine-based chalcones was synthesized. For insertion of tetramethylpyrazine (TMP, also designated as ligustrazine) in chemical backbone of chalcone, a new ligustrazine-based aldehyde was prepared. New ketones were synthesized for inclusion of quinazolin-4-yl amino and pyrazin-2-yl amino moieties. The newly synthesized compounds were screened for acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases (MAO) inhibitory activities and also for in vitro cytotoxicity on PC12 cells. The effect of these compounds against amyloid β-induced cytotoxicity and aggregation was also investigated. The synthesized compounds effectively inhibited the related enzymes and also exhibited neuroprotective effects. Most of the compounds displayed better inhibitory potencies against Aβ aggregation than reference compounds. Some compounds such as 11e and 16b showed very potent effects on multiple targets exhibiting behavior as multifunctional anti-Alzheimer agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app