Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The Irving-Williams series and the 2-His-1-carboxylate facial triad: a thermodynamic study of Mn 2+ , Fe 2+ , and Co 2+ binding to taurine/α-ketoglutarate dioxygenase (TauD).

Taurine/α-ketoglutarate (αKG) dioxygenase (TauD) is an E. coli nonheme Fe2+ - and αKG-dependent metalloenzyme that catalyzes the hydroxylation of taurine, leading to the production of sulfite. The metal-dependent active site in TauD is formed by two histidine and one aspartate that coordinating to one face of an octahedral coordination geometry, known as the 2-His-1-carboxylate facial triad. This motif is found in many nonheme Fe2+ proteins, but there is limited information on the thermodynamic parameters that govern metal-ion binding to this site. Here, we report data from calorimetry and related biophysical techniques to generate complete thermodynamic profiles of Mn2+ and Co2+ binding to TauD, and these values are compared to the Fe2+ data reported earlier Henderson et al. (Inorg Chem 54: 2278-2283, 2015). The buffer-independent binding constants (K) were measured to be 1.6 × 106 , 2.4 × 107 , and 1.7 × 109 , for Mn2+ , Fe2+ , and Co2+ , respectively. The corresponding ΔG° values were calculated to be - 8.4, - 10.1, and - 12.5 kcal/mol, respectively. The metal-binding enthalpy changes (ΔH) for these binding events are - 11.1 (± 0.1), - 12.2 (± 0.1), and - 16.0 (± 0.6) kcal/mol, respectively. These data are fully consistent with the Irving-Williams series, which show an increasing affinity for transition metal ions across the periodic table. It appears that the periodic increase in affinity, however, is a result of a complicated summation of enthalpy terms (including favorable metal-ion coordination processes and unfavorable ionization events) and related entropy terms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app