Add like
Add dislike
Add to saved papers

How low-resolution structural data predict the conformational changes of a protein: a study on data-driven molecular dynamics simulations.

Parallel cascade selection molecular dynamics (PaCS-MD) is a conformational sampling method for generating transition pathways between a given reactant and a product. PaCS-MD repeats the following two steps: (1) selections of initial structures relevant to transitions and (2) their conformational resampling. When selecting the initial structures, several measures are utilized to identify their potential to undergo transitions. In the present study, low-resolution structural data obtained from small angle scattering (SAXS) and cryo-electron microscopy (EM) are adopted as the measures in PaCS-MD to promote the conformational transitions of proteins, which is defined as SAXS-/EM-driven targeted PaCS-MD. By selecting the essential structures that have high correlations with the low-resolution structural data, the SAXS-/EM-driven targeted PaCS-MD identifies a set of transition pathways between the reactant and the product. As a demonstration, the present method successfully predicted the open-closed transition pathway of the lysine-, arginine-, ornithine-binding protein with a ns-order simulation time, indicating that the data-driven PaCS-MD simulation might work to promote the conformational transitions of proteins efficiently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app