Add like
Add dislike
Add to saved papers

Antimicrobial effect of Licochalcone A and Epigallocatechin-3-gallate against Salmonella Typhimurium isolated from poultry flocks.

Background and Objectives: Salmonellosis due to multi-drug resistant Salmonella Typhimurium with biofilm formation ability is a serious public health threat worldwide. Studies have shown that medicinal plants inhibit the growth of bacterial species. The present study aimed at determining antibiotic resistance pattern and biofilm formation ability of S. Typhimurium isolated from poultry flocks. Moreover, the antibacterial activity of Licochalcone A (LAA) and Epigallocatechin-3-gallate (EGCG) against the studied isolates were investigated in this study.

Materials and Methods: Antibiotic susceptibility testing of S . Typhimurium RITCC1730 and 23 clinical isolates of S. Typhimurium against 8 antibiotics was performed using standard Kirby-Bauer disc diffusion method. The extent of biofilm formation was measured by Microtiter dish biofilm formation assay. Antimicrobials activities of LAA and EGCG were determined by MIC and MBC assays using microdilution method.

Results: The highest antimicrobial resistance was detected against chloramphenicol (52.17%), followed by furazolidone (26.08%), and trimethoprim/sulfamethoxazole (21.73%). All isolates were sensitive to ciprofloxacin (100%), followed by gentamicin, imipenem (95.65%), and cefixime (91.30%). Most of the isolates (78.26%) were able to produce weak biofilm. LAA and EGCG inhibited the growth of S. Typhimurium at the MIC levels of 62.5∼1000 and 1.56∼400 μg/mL, respectively. The MBC value of LAA was >1000 μg/mL, while the corresponding value of EGCG varied from 100 to 800 μg/mL.

Conclusion: S. Typhimurium isolates revealed a multiple antibiotic resistance with biofilm production ability. As a result, EGCG, and to a lesser extent, LAA displayed potential antibacterial activity against S . Typhimurium and could be considered as useful compounds for the development of antibacterial agents against salmonellosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app