Add like
Add dislike
Add to saved papers

Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity.

Identifying biomarkers in schizophrenia during the first episode without the confounding effects of treatment has been challenging. Leveraging these biomarkers to establish diagnosis and make individualized predictions of future treatment responses to antipsychotics would be of great value, but there has been limited progress. In this study, by using machine learning algorithms and the functional connections of the superior temporal cortex, we successfully identified the first-episode drug-naive (FEDN) schizophrenia patients (accuracy 78.6%) and predict their responses to antipsychotic treatment (accuracy 82.5%) at an individual level. The functional connections (FC) were derived using the mutual information and the correlations, between the blood-oxygen-level dependent signals of the superior temporal cortex and other cortical regions acquired with the resting-state functional magnetic resonance imaging. We also found that the mutual information and correlation FC was informative in identifying individual FEDN schizophrenia and prediction of treatment response, respectively. The methods and findings in this paper could provide a critical step toward individualized identification and treatment response prediction in first-episode drug-naive schizophrenia, which could complement other biomarkers in the development of precision medicine approaches for this severe mental disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app