Add like
Add dislike
Add to saved papers

Seasonal changes of δD and δ18O in tree-ring cellulose of Quercus crispula suggest a change in post-photosynthetic processes during earlywood growth.

Tree Physiology 2018 June 16
Leaf photosynthetic and post-photosynthetic processes modulate the isotope ratios of tree-ring cellulose. Post-photosynthetic processes, such as the remobilization of stored starch in early spring, are important to understanding the mechanisms of xylem formation in tree stems; however, untangling the isotope ratio signals of photosynthetic and post-photosynthetic processes imprinted on tree rings is difficult. Portions of carbon-bound hydrogen and oxygen atoms are exchanged with medium water during post-photosynthetic processes. We investigated the δD and δ18O values of tree-ring cellulose using Quercus crispula Blume trees in two different habitats to evaluate seasonal changes in the exchange rate (f-value) of hydrogen or oxygen with medium water, and examined the associations of the post-photosynthetic processes. Theoretically, if the f-value is constant, δD and δ18O would be positively correlated due to meteorological factors, while variation in the f-value will create a discrepancy and weak correlation between δD and δ18O due to the exchange of carbon-bound hydrogen and oxygen with medium water. The values of δD decreased drastically from earlywood to latewood, while those of δ18O increased to a peak and then decreased toward the latewood. The estimated seasonal f-value was high at the beginning of earlywood and decreased toward the latewood. The post-photosynthetic processes associated with changes in the f-value were the remobilization of stored starch and triose cycling during cellulose synthesis because of the shortage of photo-assimilates in early spring. Although we did not evaluate relevant physiological parameters, the seasonal pattern of δD and δ18O in tree-ring cellulose of Q. crispula was clear, suggesting that the dual isotope (δD and δ18O) approach can be used to reveal the resource allocation mechanisms underlying seasonal xylem formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app