Add like
Add dislike
Add to saved papers

Human renal angiomyolipoma cells of male and female origin can migrate and are influenced by microenvironmental factors.

BACKGROUND: Improving the knowledge of angiomyolipoma physiopathology might help in refining its pharmacological treatment. We investigated if angiomyolipoma cells have migratory properties, how their growth and motility can be influenced by the hormonal milieu, and if this can be related to a specific gender.

METHODS: Primary cells were isolated from angiomyolipomas surgically resected for therapeutical reasons in a female and in a male patient. The genetic control demonstrated no TSC2 deletion. Bi- (wound healing) and three-dimensional (transwell assay) migration were analyzed in vitro in basal conditions and under the influence of 17- β-estradiol and SDF-1α.

RESULTS: Treatment up to 72 hours with 17-β-estradiol (0.1-100 nM), tamoxifen (0.2-20 μM) or with both, does not modify angiomyolipoma cells proliferation. On the other hand, SDF-1α and 17-β-estradiol treatment induce a significant motility increase (both bi- and three-dimensional) which becomes evident already after 2 hours of incubation. Angiomyolipoma cells express mRNA coding for SDF-1α and 17-β-estradiol receptors and secrete both the metalloproteases principally involved in malignant phenotype acquisition, i.e. MMP-2 and MMP-9.

CONCLUSION: Angiomyolipoma cells behave similarly, despite their different source. Primary angiomyolipoma cells migrate in response to hormonal milieu and soluble factors, and produce active metalloproteases, both aspects being consistent with the theory claiming they can migrate to the lungs (and/or other organs) and colonizing them. No main feature, among the aspects we analyzed, seems to be referable to the gender of origin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app