Add like
Add dislike
Add to saved papers

Polyglobalide-Based Porous Networks Containing Poly(ethylene glycol) Structures Prepared by Photoinitiated Thiol-Ene Coupling.

Biomacromolecules 2018 August 14
The high interest in polymers from natural resources prompted us to investigate the use of enzymatically synthesized polyglobalide (PGL) in the preparation of polymer networks with potential applications as biomaterials for drug delivery devices. Polymer networks were obtained under mild conditions by photoinitiated thiol-ene coupling between PGL and a poly(ethylene glycol- co-thiomalate) (PEG-SH) copolymer obtained by polycondensation. The obtained polymer networks were thoroughly characterized by Raman spectroscopy, scanning electron microscopy, titration of thiol groups and elemental analysis. Our study took into consideration the synthesis parameters for the polymer networks, such as the total polymer concentration and the SH/C=C functionality molar ratio. Swelling in both THF and water was assessed, and the potential of the materials for drug delivery was determined. The scanning electron microscopy images showed that the prepared polymer networks may have different morphologies ranging from homogeneous polymer materials to macroporous structures. Additionally, the prepared materials were found to be suitable from a cytotoxicity point of view, enabling their application as biomaterials for drug delivery devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app