Add like
Add dislike
Add to saved papers

Tumor-Suppressive Function of miR-30d-5p in Prostate Cancer Cell Proliferation and Migration by Targeting NT5E.

MiR-30d-5p, a member of the microRNA family, was recently reported to regulate androgen receptor signaling in prostate cancer (PCa). Ecto-5'-nucleotidase (NT5E/CD73) is a pivotal regulator of tumor migration and has angiogenetic properties. However, the undiscovered function of miR-30d-5p and whether it targeted NT5E in PCa remain uncertain. In this study, the authors observed miR-30d-5p was significantly downregulated in PCa tissues and cell lines compared with the adjacent normal tissues and normal prostate cells, respectively. The lower expression of miR-30d-5p was found to be inversely correlated with the NT5E expression in PCa tissues. Subsequently, the biological function of miR-30d-5p was evaluated in PCa in vitro. The results indicated that miR-30d-5p overexpression inhibited PCa cell growth and invasion by MTT, Transwell assays, respectively, as well as induced cell cycle G0/G1 phase arrest and apoptosis using flow cytometry analysis. In addition, miR-30d-5p directly bound to the 3'UTR (3' untranslated region) of NT5E in DU-145 and PC-3 cells by luciferase reporter assay. Furthermore, enforced NT5E expression alleviated miR-30d-5p inhibition of PCa cell growth and invasion in DU145 cells. Taken together, these data indicated that miR-30d-5p may be a potential therapeutic target for the treatment of PCa by serving as a tumor suppressor, by negatively regulating NT5E.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app