Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Shape-Controlled Synthesis of Platinum-Copper Nanocrystals for Efficient Liquid Fuel Electrocatalysis.

Well-defined noble metal nanomaterials are attractive as catalysts for various applications because of abundant surface-active sites. However, the shape-controlled synthesis of high-performance Pt-based nanocatalysts remains a forbidden challenge. We herein demonstrate a versatile approach for realizing the systemically controlled syntheses of bimetallic Pt-Cu nanocrystals (NCs) from concave nanocubes (CNCs), to excavated nanocubes, to tripods via simply switching the amount of glycine (reducing agent). These Pt-Cu nanostructures supply a desirable platform for carrying out the structure-dependent electrocatalytic studies in the liquid fuel electro-oxidation. Impressively, all of the Pt-Cu NCs show high activity and outstanding durability for alcohol oxidation. In particular, the Pt-Cu CNCs display unprecedent high activity toward MOR and EOR, which are found to be 2041.1 and 5760.9 mA mg-1 in mass activity, 7.9- and 11.5-folds greater than the commercial Pt/C catalysts, respectively, showing a promising class of electrocatalysts for fuel cells. This work sheds great promise for optimizing the electrochemical catalysis by precisely modulating the structure of catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app