Add like
Add dislike
Add to saved papers

Regulatory effects of microRNA‑184 on osteosarcoma via the Wnt/β‑catenin signaling pathway.

The present study aimed to investigate the role of microRNA (miRNA/miR)‑184 in osteosarcoma growth, development and metastasis, and the effects of miRNA‑184 on the proliferation, invasion and metastasis of osteosarcoma cells and associated mechanisms. In vitro, miR‑184 was transfected into U‑2OS cells and 143B cells. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect the expression of miR‑184. MTT was utilized to detect cell proliferation. A Transwell assay was applied to detect cell invasiveness. In vivo, an osteosarcoma tibial orthotopic metastatic tumor model was established, and western blotting and RT‑qPCR were used to detect the expression of Wnt and β‑catenin. Following the overexpression of miR‑184, the proliferation and cell invasion ability were significantly increased in U‑2OS and 143B cells. Following inhibition of miR‑184, cell proliferation and cell invasion ability were significantly decreased. In nude mice, tumor volume significantly increased following overexpression of miR‑184, and Wnt and phosphorylated β‑catenin levels were significantly increased. Following miR‑184 inhibition, tumor volume was significantly decreased, and Wnt and phosphorylated β‑catenin levels were significantly decreased. The results of the present study indicated that the Wnt/β‑catenin signaling pathway serves a key function in the mechanism of osteosarcoma. Inhibition of miRNA‑184 may reduce tumor volume of osteosarcoma via regulation of the Wnt/β‑catenin signaling pathway and may provide a novel strategy for the future diagnosis and treatment of osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app