Add like
Add dislike
Add to saved papers

Why is Ice Slippery? Simulations of Shear Viscosity of the Quasi-Liquid Layer on Ice.

The temperature and depth dependence of the shear viscosity (η) of the quasi-liquid layer (QLL) of water on ice-Ih crystals was determined using simulations of the TIP4P/Ice model. The crystals display either the basal {0001} or prismatic {101̅0} facets, and we find that the QLL viscosity depends on the presented facet, the distance from the solid/liquid interface, and the undercooling temperature. Structural order parameters provide two distinct estimates of the QLL widths, which are found to range from 6.0 to 7.8 Å, and depend on the facet and undercooling temperature. Above 260 K, the viscosity of the vapor-adjacent water layer is significantly less viscous than the solid-adjacent layer and is also lower than the viscosity of liquid water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app