Add like
Add dislike
Add to saved papers

Influence of Polymers on the Physical and Chemical Stability of Spray-dried Amorphous Solid Dispersion: Dipyridamole Degradation Induced by Enteric Polymers.

AAPS PharmSciTech 2018 June 19
Amorphous solid dispersions (ASDs) are inherently unstable because of high internal energy. Evaluating physical and chemical stability during the process and storage is essential. Numerous researches have demonstrated how polymers influence the drug precipitation and physical stability of ASDs, while the influence of polymers on the chemical stability of ASDs is often overlooked. Therefore, this study aimed to investigate the effect of polymers on the physical and chemical stability of spray-dried ASDs using dipyridamole (DP) as a model drug. Proper polymers were selected by assessing their abilities to inhibit drug recrystallization in supersaturated solutions. HPMC E5, Soluplus®, HPMCP-55, and HPMCAS-LP were shown to be effective stabilizers. The optimized formulations were further stored at a high temperature (60 °C) and high humidity (40 °C, 75% RH) for 2 months, and their physical and chemical stability was evaluated using polarizing optical microscopy, FTIR, HPLC, and mass spectrometry (MS). In general, crystallization was observed in all samples, which indicated the physical instability under stressed storage conditions. Also, it was noted that the polymers in ASDs rather than physical mixtures, induced a dramatic drug degradation after being exposed to a high temperature (HPMCP-55 > 80% and HPMCAS-LP > 50%) and high humidity (HPMCP-55 > 40% and HPMCAS-LP > 10%). The MS analysis further confirmed the degradation products, which might be generated from the reaction between dipyridamole and phthalic anhydride decomposed from HPMCP-55 and HPMCAS-LP. Overall, the exposure of ASDs to stressed conditions resulted in recrystallization and even the chemical degradation induced by polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app