Add like
Add dislike
Add to saved papers

An agent-based model of the fission yeast cell cycle.

Current Genetics 2018 June 19
The objective of this paper is to develop a computational model of the fission yeast (Schizosaccharomyces pombe) cell cycle using agent-based modeling (ABM), to study the sequence of states of the proteins and time of the cell cycle phases, under the action of proteins that regulate its cell cycle. The model relies only on the conceptual model of the yeast cell cycle regulatory network, where each protein has been represented as an agent with a property called activity that represents its biological function and a stochastic Brownian movement. The results indicate that the simulated phase time did have similar results in comparison with other models using mathematical approaches. Similarly, the correct sequence of states was achieved, and the model was run under different initial states to understand its emergent behaviors. The cell reached the G1 stationary state 94% of the times when running the model under biological initial conditions and 87% of the times when running the model through all the different combinations of initial states. Such results imply that the cell was capable to fix toward the biological expected phenomena. These results show that ABM is a suitable technique to study protein-protein interactions without using, often unavailable, kinetic parameters, or differential equations. This model sets as a base for further studies that involve the cell cycle of the fission yeast, with a special attention to studies and development of drug treatments for specific types of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app