Add like
Add dislike
Add to saved papers

False Positive Reduction by an Annular Model as a Set of Few Features for Microcalcification Detection to Assist Early Diagnosis of Breast Cancer.

Early automatic breast cancer detection from mammograms is based on the extraction of lesions, known as microcalcifications (MCs). This paper proposes a new and simple system for microcalcification detection to assist in early breast cancer detection. This work uses the two most recognized public mammogram databases, MIAS and DDSM. We are introducing a MC detection method based on (1) Beucher gradient for detection of regions of interest (ROIs), (2) an annulus model for extraction of few and effective features from candidates to MCs, and (3) one classification stage with two different classifiers, k Nearest Neighbor (KNN) and Support Vector Machine (SVM). For dense mammograms in the MIAS database, the performance metrics achieved are sensitivity of 0.9835, false alarm rate of 0.0083, accuracy of 0.9835, and area under the ROC curve of 0.9980 with a KNN classifier. The proposed MC detection method, based on a KNN classifier, achieves, a sensitivity, false positive rate, accuracy and area under the ROC curve of 0.9813, 0.0224, 0.9795 and 0.9974 for the MIAS database; and 0.9035, 0.0439, 0.9298 and 0.9759 for the DDSM database. By slightly reducing the true positive rate the method achieves three instances with false positive rate of 0: 2 on fatty mammograms with KNN and SVM, and one on dense with SVM. The proposed method gives better results than those from state of the art literature, when the mammograms are classified in fatty, fatty-glandular, and dense.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app