Add like
Add dislike
Add to saved papers

Kcnn4 is a modifier gene of intestinal cystic fibrosis preventing lethality in the Cftr-F508del mouse.

Scientific Reports 2018 June 19
Nearly 70% of cystic fibrosis (CF) patients bear the phenylalanine-508 deletion but disease severity differs greatly, and is not explained by the existence of different mutations in compound heterozygous. Studies demonstrated that genes other than CFTR relate to intestinal disease in humans and CF-mouse. Kcnn4, the gene encoding the calcium-activated potassium channel KCa 3.1, important for intestinal secretion, is present in a locus linked with occurrence of intestinal CF-disease in mice and humans. We reasoned that it might be a CF-modifier gene and bred a CF-mouse with Kcnn4 silencing, finding that lethality was almost abolished. Silencing of Kcnn4 did not improve intestinal secretory functions, but rather corrected increased circulating TNF-α level and reduced intestinal mast cell increase. Given the importance of mast cells in intestinal disease additional double mutant CF-animals were tested, one lacking mast cells (C-kitW-sh/W-sh ) and Stat6-/- to block IgE production. While mast cell depletion had no effect, silencing Stat6 significantly reduced lethality. Our results show that Kcnn4 is an intestinal CF modifier gene partially acting through a STAT6-dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app