Add like
Add dislike
Add to saved papers

Genes and Proteins Involved in qnrS1 Induction.

Expression of the quinolone resistance gene qnrS1 is increased by quinolones, but unlike induction of some other qnr genes, the bacterial SOS system is not involved and no lexA box is found upstream. Nonetheless, at least 205 bp of upstream sequence is required for induction to take place. An upstream sequence bound to beads trapped potential binding proteins from cell extracts that were identified by mass spectrometry as Dps, Fis, Ihf, Lrp, CysB, and YjhU. To further elucidate their role, a reporter plasmid linking the qnrS1 upstream sequence to lacZ was introduced into cells of the Keio collection with single-gene deletions and screened for lacZ expression. Mutants in ihfA and ihfB had decreased lacZ induction, while induction in a cysB mutant was increased and dps , fis , lrp , yjhU , and other mutants showed no change. The essential upstream sequence contains potential binding sites for Ihf and DnaA. A dnaA deletion could not be tested because it provides essential functions in cell replication; however, increased dnaA expression decreased qnrS1 induction while decreased dnaA expression enhanced it, implying a role for DnaA as a repressor. In a mobility shift assay, purified IhfA, IhfB, and DnaA proteins (but not CysB) were shown to bind to the upstream segment. Induction decreased in a gyrA quinolone-resistant mutant, indicating that GyrA also has a role. Thus, quinolones acting through proteins DnaA, GyrA, IhfA, and IhfB regulate expression of qnrS1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app