Add like
Add dislike
Add to saved papers

Sensitivity analysis of ST-segment epicardial potentials arising from changes in ischaemic region conductivities in early and late stage ischaemia.

Although computational studies are increasingly used to gain insight into diseases such as myocardial ischaemia, there is still considerable uncertainty about the values for many of the parameters in these studies. This is particularly true for the bidomain conductivity values that are used in normal tissue and, even more so, in ischaemic tissue, when modelling ischaemia. In this work, we extended a previous study that used a half-ellipsoidal model and a realistic model to study subendocardial ischaemia during the ST segment, so that we could simulate both early and late stage ischaemia. We found that, for both stages of ischaemia, there was still the same connection between the degree of ischaemia and the development of features such as minima and maxima in the epicardial potential distribution (EPD), although the magnitudes of the potentials were very often less, which may be significant in terms of detecting them experimentally. Using uncertainty quantification associated with the ischaemic region conductivities, we also determined that the EPD features were sensitive to the ischaemic region extracellular normal and longitudinal conductivities during early stage ischaemia, whereas, during late stage ischaemia, the intracellular longitudinal conductivity was the most significant. However, since we again found that these effects were minor compared with the effects of fibre rotation angle and ischaemic depth, this might suggest that it is not necessary to use different conductivity values inside and outside the ischaemic region when modelling ST segment subendocardial ischaemia, unless the magnitudes of the potentials are an important part of the study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app