Add like
Add dislike
Add to saved papers

Neuropathic pain models in the development of analgesic drugs.

Introduction Animal disease models are predictive for signs seen in disease. They may rarely mimic all signs in a specific disease in humans with respect to etiology, cause or development. Several models have been developed for different pain states and the alteration of behavior has been interpreted as a response to external stimulus or expression of pain or discomfort. Considerable attention must be paid not to interpret other effects such as somnolence or motor impairment as a pain response and similarly not to misinterpret the response of analgesics. Neuropathic pain is caused by injury or disease of the somatosensory system. The clinical manifestations of neuropathic pain vary including both stimulus-evoked and non-stimulus evoked (spontaneous) symptoms. By pharmacological intervention, the threshold for allodynia and hyperalgesia in the various pain modalities can be modulated and measured in animals and humans. Animal models have been found most valuable in studies on neuropathic pain and its treatment. Aim of the study With these interpretation problems in mind, the present text aims to describe the most frequently used animal models of neuropathic pain induced by mechanical nerve injury. Methods The technical surgical performance of these models is described as well as pain behavior based on the authors own experience and from a literature survey. Results Nerve injury in the hind limb of rats and mice is frequently used in neuropathic pain models and the different types of lesion may afford difference in the spread and quality of the pain provoked. The most frequently used models are presented, with special focus on the spared nerve injury (SNI) and the spinal nerve ligation/transection (SNL/SNT) models, which are extensively used and validated in rats and mice. Measures of mechanical and thermal hypersensitivity with von Frey filaments and Hargreaves test, respectively, are described and shown in figures. Conclusions A number of animal models have been developed and described for neuropathic pain showing predictive value in parallel for both humans and animals. On the other hand, there are still large knowledge gaps in the pathophysiologic mechanisms for the development, maintenance and progression of the neuropathic pain syndrome Implications Better understanding of pathogenic mechanisms of neuropathic pain in animal models may support the search for new treatment paradigms in patients with complex neuropathic pain conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app