Add like
Add dislike
Add to saved papers

Do patients with functional chest pain have neuroplastic reorganization of the pain matrix? A diffusion tensor imaging study.

Background and aims In functional chest pain (FCP) of presumed esophageal origin central nervous system hyperexcitability is generally believed to play an important role in pain pathogenesis. However, this theory has recently been challenged. Using magnetic resonance diffusion tensor imaging, the aim was to characterize any microstructural reorganization of the pain neuromatrix in FCP patients. Methods 13 FCP patients and 20 matched healthy controls were studied in a 3T MR scanner. Inclusion criteria were relevant chest pain, normal coronary angiogram and normal upper gastrointestinal evaluation. Apparent diffusion coefficient (ADC) (i.e. mean diffusivity of water) and fractional anisotropy (FA) (i.e. directionality of water diffusion as a measure of fiber organization) values were assessed in the secondary sensory cortex, cingulate cortex, insula, prefrontal cortex, and amygdala. Results Overall, including all regions, no difference in ADC and FA values was found between the patients and controls (P = 0.79 and P = 0.23, respectively). Post-hoc tests revealed no difference in ADC and FA values of the individual regions. However, a trend of patients having increased ADC in the mid insula grey matter and increased FA in the mid insula white matter was observed (both P = 0.065). Conclusions This explorative study suggests that microstructural reorganization of the central pain neuromatrix may not be present in well-characterized FCP patients. Implications This finding, together with recent neurophysiologal evidence, challenges the theory of visceral hypersensitivity due to changes in the central nervous system in FCP patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app