Add like
Add dislike
Add to saved papers

ABT-263-induced MCL1 upregulation depends on autophagy-mediated 4EBP1 downregulation in human leukemia cells.

Cancer Letters 2018 September 29
The present study aimed to investigate the pathway related to MCL1 expression in ABT-263-treated human leukemia U937 cells. ABT-263 upregulated MCL1 protein expression but did not affect its mRNA level and protein stability. Notably, ABT-263 increased 4EBP1 mRNA decay and thus reduced 4EBP1 expression. Overexpression of 4EBP1 abrogated ABT-263-induced MCL1 upregulation. ABT-263-induced activation of IKKα/β-NFκB axis elicited autophagy of U937 cells, leading to reduced mRNA stability of 4EBP1. Inhibition of the IKKα/β-NFκB axis or autophagy mitigated the effect of ABT-263 on 4EBP1 and MCL1 expression. Amsacrine enhanced the cytotoxicity of ABT-263 in human leukemia U937, HL-60, and Jurkat cells because of its inhibitory effect on the IKKα/β-NFκB-mediated pathway. Our data indicate that ABT-263 alleviates the inhibitory effect of 4EBP1 on MCL1 protein synthesis through IKKα/β-NFκB-mediated induction of autophagy, and suggest a promising strategy to improve anti-leukemia therapy with ABT-263.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app