Add like
Add dislike
Add to saved papers

The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats.

Acrylamide (ACR) is a hazardous substance associated with the accumulation of excessive reactive oxygen species and causes oxidative stress. Presence of ACR in foods leads to public health concerns due to its known neurotoxic, genotoxic, and carcinogenic effects. The present study investigated the ameliorative effects of boron (B) against ACR exposed rats. Forty Wistar albino male rats, fed with low-boron diet, were randomly and equally allocated into 5 groups. The control group was orally treated with physiological saline as placebo, the second group was orally given 15 mg/kg ACR. The other groups were orally treated with 15 mg/kg ACR and B at the levels of 5, 10, and 20 mg/kg/day for 60 days, respectively. ACR-treatment significantly increased malondialdehyde levels whereas decreased glutathione levels in rat tissues. Also, ACR-treatment increased the activities of superoxide dismutase and catalase in erythrocytes and tissues. Meanwhile, mRNA expression levels of NFĸB, IFN-γ, IL-1β, and TNF-α in liver and brain of rats were increased under ACR treatment. Additionally, ACR caused a significant decrease in the level of high-density lipoprotein, with increase in the levels of low-density lipoprotein, triglyceride, cholesterol, glucose, urea nitrogen, and creatinine. Lastly, B alleviated histopathological alterations induced by ACR in rat tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app