Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice.

Neuropharmacology 2018 August
Since Cav 3.2 T-type Ca2+ channels (T-channels) expressed in the primary afferents and CNS contribute to intractable pain, we explored T-channel-blocking components in distinct herbal extracts using a whole-cell patch-clamp technique in HEK293 cells stably expressing Cav 3.2 or Cav 3.1, and purified and identified sophoraflavanone G (SG) as an active compound from SOPHORAE RADIX (SR). Interestingly, hop-derived SG analogues, (2S)-6-prenylnaringenin (6-PNG) and (2S)-8-PNG, but not naringenin, also blocked T-channels; IC50 (μM) of SG, (2S)-6-PNG and (2S)-8-PNG was 0.68-0.75 for Cav 3.2 and 0.99-1.41 for Cav 3.1. (2S)-6-PNG and (2S)-8-PNG, but not SG, exhibited reversible inhibition. The racemic (2R/S)-6-PNG as well as (2S)-6-PNG potently blocked Cav 3.2, but exhibited minor effect on high-voltage-activated Ca2+ channels and voltage-gated Na+ channels in differentiated NG108-15 cells. In mice, the mechanical allodynia following intraplantar (i.pl.) administration of an H2 S donor was abolished by oral or i.p. SR extract and by i.pl. SG, (2S)-6-PNG or (2S)-8-PNG, but not naringenin. Intraperitoneal (2R/S)-6-PNG strongly suppressed visceral pain and spinal ERK phosphorylation following intracolonic administration of an H2 S donor in mice. (2R/S)-6-PNG, administered i.pl. or i.p., suppressed the neuropathic allodynia induced by partial sciatic nerve ligation or oxaliplatin, an anti-cancer agent, in mice. (2R/S)-6-PNG had little or no effect on open-field behavior, motor performance or cardiovascular function in mice, and on the contractility of isolated rat aorta. (2R/S)-6-PNG, but not SG, was detectable in the brain after their i.p. administration in mice. Our data suggest that 6-PNG, a hop component, blocks T-channels, and alleviates neuropathic and visceral pain with little side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app