Add like
Add dislike
Add to saved papers

Plasma exosomes regulate systemic blood pressure in rats.

Exosomes, the smallest extracellular vesicle, contain various molecules and mediate cell-cell communication. A number of studies demonstrate exosomes are involved in important physiological and pathological processes. Moreover, microRNA (miRNA) regulating hypertension development through the suppression of certain translation was recently reported. However, roles of exosomes containing various molecules including miRNA on development of essential hypertension have not been examined. We tested the hypothesis that plasma exosomes regulate systemic blood pressure in normotensive and spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto rats (WKY) and SHR (5-10-week-old) were intraperitoneally administrated with exosomes derived from plasma in WKY or SHR weekly for 6 weeks. Exosomes were isolated by an ultracentrifuge method. SHR-derived exosomes significantly increased systolic blood pressure in WKY, while WKY-derived exosomes decreased it in SHR. In WKY, SHR-derived exosomes induced modest structural changes of thoracic aorta, such as wall thickening and decreased abundance of collagen, which were similar to the changes observed in SHR. On the contrary, WKY-derived exosomes tended to reverse the changes in SHR. WKY-derived exosomes significantly suppressed the increased prostaglandin F2α -induced contraction of mesenteric arterial smooth muscle in SHR. In addition, wet weight and perivascular fibrosis of left ventricles in WKY were significantly increased by SHR-derived exosomes, while the fibrosis but not ventricular weight was significantly decreased by WKY-derived exosomes in SHR. We for the first time demonstrated that plasma exosomes can modulate systemic blood pressure as well as structure and function of cardiovascular tissues in both normotensive and hypertensive rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app