Add like
Add dislike
Add to saved papers

Corresponding Orbitals Derived from Periodic Bloch States for Electron Transfer Calculations of Transition Metal Oxides.

An approach for modeling electron transfer in solids and at surfaces of iron-(oxyhydr)oxides and other redox active solids has been developed for electronic structure methods (i.e., plane-wave density functional theory) capable of performing calculations with periodic cells and large system sizes efficiently while at the same time being accurate enough to be used in the estimation of the electron-transfer coupling matrix element, V AB , and the electron transfer transmission factor, κel . This method is an extension of the valence bond theory electron transfer method for molecules and clusters implemented by Dupuis and others and used extensively by Rosso and co-workers in which scaled corresponding orbitals derived from the Bloch states are used to calculate the off-diagonal matrix elements H AB and S AB . A key development of the present work is the formulation of algorithms to improve the accuracy of the integration of the exact exchange integral in periodic boundary conditions. This method is demonstrated on model systems for electron small polaron transfer in iron-(oxyhydr)oxides, including bare Fe2+ -Fe3+ ions, and in [Fe3+ (OH2 )2 (OH- )2 )] n n+ chains representing the common edge-sharing Fe octahedral motif in these materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app