Add like
Add dislike
Add to saved papers

Bayesian inference for network meta-regression using multivariate random effects with applications to cholesterol lowering drugs.

Biostatistics 2018 April 19
Low-density lipoprotein cholesterol (LDL-C) has been identified as a causative factor for atherosclerosis and related coronary heart disease, and as the main target for cholesterol- and lipid-lowering therapy. Statin drugs inhibit cholesterol synthesis in the liver and are typically the first line of therapy to lower elevated levels of LDL-C. On the other hand, a different drug, Ezetimibe, inhibits the absorption of cholesterol by the small intestine and provides a different mechanism of action. Many clinical trials have been carried out on safety and efficacy evaluation of cholesterol lowering drugs. To synthesize the results from different clinical trials, we examine treatment level (aggregate) network meta-data from 29 double-blind, randomized, active, or placebo-controlled statins +/$-$ Ezetimibe clinical trials on adult treatment-naïve patients with primary hypercholesterolemia. In this article, we propose a new approach to carry out Bayesian inference for arm-based network meta-regression. Specifically, we develop a new strategy of grouping the variances of random effects, in which we first formulate possible sets of the groups of the treatments based on their clinical mechanisms of action and then use Bayesian model comparison criteria to select the best set of groups. The proposed approach is especially useful when some treatment arms are involved in only a single trial. In addition, a Markov chain Monte Carlo sampling algorithm is developed to carry out the posterior computations. In particular, the correlation matrix is generated from its full conditional distribution via partial correlations. The proposed methodology is further applied to analyze the network meta-data from 29 trials with 11 treatment arms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app