Add like
Add dislike
Add to saved papers

Workloads of Competitive Surfing: Work-to-Relief Ratios, Surf-Break Demands, and Updated Analysis.

Farley, ORL, Secomb, JL, Raymond, ER, Lundgren, LE, Ferrier, BK, Abbiss, CR, and Sheppard, JM. Workloads of competitive surfing: work-to-relief ratios, surf-break demands, and updated analysis. J Strength Cond Res 32(10): 2939-2948, 2018-The study provides an in-depth descriptive and quantitative time-motion analysis of competitive surfing, using Global Positioning System (GPS) units and video synchronization, which serves to extend upon the results of Farley, Harris, and Kilding (Journal of Strength and Conditioning Research, 26, 7 [2012]). In addition, comparisons between locations and surfers competing in the same heats were performed. Global Positioning System and video data were collected from 41 male competitive surfers (23.2 ± 6.1 years, 71 ± 10.3 kg, 177.2 ± 6.4 cm) participating in 3 professional domestic surfing events, with competitive heats of 20-minute duration. Fifty data sets were analyzed across the 3 competitions, with velocities and distances covered, proportion of time spent performing various surfing activities, and total work-to-relief ratio determined. Results revealed surfers paddled 44% of the total time, followed by stationary periods (42%). Surfers performed at a significantly (p ≤ 0.05) higher work-to-relief ratio (1.7:1) at the beach-break (an exposed beach) compared with point-break 1 and 2 (waves breaking around a rocky point). Point-breaks 1 and 2 had longer continuous durations of paddling, with significantly longer rides at point-break 1 over the beach-break (p ≤ 0.01) and point-break 2 (p ≤ 0.01). The average maximal speed (24.8 km·h) from point-break 2 was significantly faster than point-break 1 (p ≤ 0.01) and beach-break (p ≤ 0.05). This information should influence surfing drills and conditioning methods to prepare these athletes for the disparate demands, such as training for a point-break competition involving longer durations of continuous paddling and short, high-intensity workloads for a beach-break.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app