Add like
Add dislike
Add to saved papers

Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts.

Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1-1 M), sulfuric and acetic acid concentrations (0.05-0.5 M and 0.5-1 M, respectively), and reaction temperatures (80-200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol-1 and 120.9 kJ mol-1 for sulfuric and acetic acid, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app