Add like
Add dislike
Add to saved papers

Characteristics of hydrogen-producing enrichment cultures from marine sediment using macroalgae Laminaria japonica as a feedstock.

This study aimed to investigate the characteristics of hydrogen production by mixed cultures using Laminaria japonica hydrolysates. The hydrolysates of L. japonica were prepared by pretreatment methods, including heat (100°C or 121°C) and acid (HCl or H2 SO4 ) pretreatments. The mixed cultures could produce hydrogen using L. japonica as a substrate, with the highest cumulative hydrogen production of 825 ± 14 mL/L from HCl-pretreated L. japonica. High-throughput sequencing of the 16S rRNA gene revealed that the microbial community in the hydrolysate of HCl-pretreated L. japonica was the most diverse among all the samples, with a Shannon diversity index of 5.253. The mixed culture from HCl-pretreated L. japonica and those from heat-pretreated (100°C and 121°C) L. japonica occupied different regions in a principal component analysis (PCA) plot. The dominant population in the hydrolysate of HCl-pretreated L. japonica was represented by hydrogen-producing bacteria, Clostridium spp. and Bacillus spp. The results suggested that L. japonica was an optimal feedstock for hydrogen production. The acid (HCl) pretreatment method could effectively enhance the hydrogen production from L. japonica.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app